Scalar curvature and the multiconformal class of a direct product Riemannian manifold

نویسندگان

چکیده

Abstract For a closed, connected direct product Riemannian manifold $$(M, g)=(M_1, g_1) \times \cdots (M_l, g_l)$$ ( M , g ) = 1 × ⋯ l , we define its multiconformal class $$ [\![ g ]\!]$$ [ ] as the totality $$\{f_1^2g_1\oplus \oplus f_l^2g_l\}$$ { f 2 ⊕ } of all metrics obtained from multiplying metric $$g_i$$ i each factor $$M_i$$ by positive function $$f_i$$ on total space M . A contains not only warped type deformations but also whole conformal $$[\tilde{g}]$$ ~ every $$\tilde{g}\in ∈ In this article, prove that scalar curvature if and some $$(M_i, g_i)$$ does, under technical assumption $$\dim M_i\ge 2$$ dim ≥ We show that, even in case where has curvature, constantly equal to $$-1$$ - with arbitrarily large volume, provided $$l\ge M\ge 3$$ 3

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

on a class of paracontact riemannian manifold

we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.

متن کامل

Remark about Scalar Curvature and Riemannian Submersions

We consider modified scalar curvature functions for Riemannian manifolds equipped with smooth measures. Given a Riemannian submersion whose fiber transport is measure-preserving up to constants, we show that the modified scalar curvature of the base is bounded below in terms of the scalar curvatures of the total space and fibers. We give an application concerning scalar curvatures of smooth lim...

متن کامل

The Q-curvature on a 4-dimensional Riemannian Manifold

One of the most important problem in conformal geometry is the construction of conformal metrics for which a certain curvature quantity equals a prescribed function, e.g. a constant. In two dimensions, the problem of prescribed Gaussian curvature asks the following: given a smooth function K on (M,g0), can we find a metric g conformal to g0 such that K is the Gaussian curvature of the new metri...

متن کامل

Examples of hypersurfaces flowing by curvature in a Riemannian manifold

This paper gives some examples of hypersurfaces φt(M ) evolving in time with speed determined by functions of the normal curvatures in an (n+ 1)-dimensional hyperbolic manifold; we emphasize the case of flow by harmonic mean curvature. The examples converge to a totally geodesic submanifold of any dimension from 1 to n, and include cases which exist for infinite time. Convergence to a point was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometriae Dedicata

سال: 2021

ISSN: ['0046-5755', '1572-9168']

DOI: https://doi.org/10.1007/s10711-021-00636-9